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In this paper we reexamine the one-dimensional interaction of electromagnetic and ion acoustic waves in a
plasma. Our model is similar to one solved by R#al. [Phys. Fluids26, 2488(1983] under a number of
analytical approximations. Here we perform a numerical investigation to examine the stability of the model.
We find that for slightly overdense plasmas, the propagation of stable solitary modes can occur in an adiabatic
regime where the ion acoustic electric-field potential is enslaved to the electromagnetic field of a laser.
However, if the laser intensity or plasma density increases or the laser frequency decreases, the adiabatic
regime loses stability via a transition to chaos. Different asymptotic states are attained when the adiabatic
regime no longer exists. In these states the plasma becomes rarefied and the laser field tends to behave like a
vacuum field[S1063-651X97)05603-1

PACS numbds): 52.35.Mw, 05.45+b

[. INTRODUCTION coupled oscillators. A different feature studied here is that
when the laser frequency is smaller than the average plasma
The recent developments of laser technologies allow thérequency, wave localization can occur such that one has the
creation of strong pulses that can propagate in a plasm#égrmation of intense solitary pulses. In terms of the system of
either to accelerate particl¢4] or to induce laser-assisted equivalent oscillators, the possibility of solitary pulses oc-
fusion[2]. Now, if a laser pulse interacts with a plasma, thecurs when by varying the appropriate parameters the linear
possibility exists of nonlinear wave coupling involving the frequency of that oscillator describing the laser wave be-
pulse itself and nonlinear plasma mod@&s3]. Since the va- comes imaginary. Using the language of nonlinear dynamics,
riety of these nonlinear plasma modes is large and since eacthis change in the character of the frequency occurs because
mode exhibits a considerable richness regarding amplitudehe central elliptic point present in the appropriate phase
polarization, and frequency rangé,5], the nonlinear mode space turns into a hyperbolic poiritQ].
coupling is a feature to be appreciated with care. The work by Racet al. [9] utilizes powerful approxima-
One important example of nonlinear mode coupling con<ion techniques, but is essentially analytical as commented
cerns the interaction of relativistically strong electromagnetidoefore. Therefore, one would like to have some information
waves with Langmuir wavef5—8]. These analyses are re- on the stability of the solitary pulses thus formed, and this is
stricted to simple wave solutions with well-defined propaga-what we do here. The stability issue has already been ad-
tion velocities that are superluminous in an unmagnetizediressed several times over the past years, but the focus has
plasma. For these superluminous waves it is shown that thieeen preferentially directed upon the linear perspedtiié
wave dynamics can be viewed as similar to the coupled dyHowever, if one wishes to have some additional insight into
namics of two nonlinear oscillators with their natural fre- the nonlinear development of these instabilities, the most ap-
quencies given by real numbers. One of the oscillators depropriate tools of investigation appear to be the Poincare
scribes the transverse electromagnetic field and the other theaps mentioned above. With these maps one records the
longitudinal electrostatic field. The dynamics is found to bephase-space coordinates of one of the oscillators, as one of
predominantly integrable. Some nonlinear resonant islanthe coordinates of the other crosses its zero with a definite
chains are present in the appropriate Poincaags[8], but  sign for the derivative. Since the system is two degrees of
their overlap is so small that the resulting trajectories ardreedom and since there exists a conserved Hamiltonian for
mostly regular. the system, the point recorded on the map gives all the rel-
In another important range of subluminous wave veloci-evant information for the dynamics. Regular motion is asso-
ties, around the ion acoustic range, the laser wave can couptiated with smooth curves of the Poincanaps and chaotic
to ion acoustic plasma modes. In this case the coupled wavéer nonintegrablemotion is associated with an erratic distri-
propagate with velocities close to the ion acoustic velocity bution of points representing the trajectory. We find here that
which is much smaller than the velocity of light. Here the the stability of the solitary pulses is quite limited. In fact, we
ionic dynamics plays a crucial role and the resulting dynamfound no regular motion for velocities sufficiently below the
ics, in principle, bears no resemblance to the dynamics dden acoustic velocities and for effective laser frequencies suf-
scribed in the preceding paragraph. A good deal of analyticdiciently below the average plasma frequency. In those cha-
work has been done in R4®] to show that if one assumes otic situations the final asymptotic behavior looks like the
once more a common and constant propagation velocity, thene corresponding to uncoupled waves in the vacuum. The
system becomes again equivalent to a pair of nonlinearlyntrinsic instability of the system for too low values of the
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effective laser wave frequency, in particular, seems to prepart, on the other hand, yields a governing equation for the
clude the formation of some special soliton solutions, as weeal amplitudey, valid whenV<c,

shall see. Chaos is present because our system is two degrees

of freedom and the system is two degrees of freedom be- d?y W

cause we allow for charge separation in the ion acoustic dy- 9 =—Ay+(1+ 5ne)—2. (5
namics. Had we used quasineutrality assumptions, the sys- Vi+y

tem would be one degree of freedom and chaotic solutions ) ) )

would be absent. We finally point out that the transition to/" EQ. (5), space is r;olr/r;alllzed by the electronic Debye
chaos we detect here is of a conservative character, so tHngth ’\Dée:(Te/Ameoq )7 time by the ion plasma fre-
chaotic dynamics we expect to see is of different type fromiuency wpy;=4mnog?/m;, and density byng; m; is the ion
the one present in dissipative systeffsl 2. mass, T, is the electron temperatureﬂ=czlvfe>1,

The paper is organized as follows. In Sec. Il we reviewA=w2/w§e, vtze=Te/me, andw§e=47m0q2/me. Note that
the basic theory governing the interaction of a laser and aim our calculations the character of the electromagnetic wave
ion acoustic mode. In Sec. Ill we analyze the nonintegrablés determined by whethek is larger or smaller than unity. In
dynamics with help of Poincarmaps. In Sec. IV we con- the former case one has propagation in an underdense plasma

clude the work. and in the latter case one has propagation in an overdense
plasma. Since it can be seen in E5). that the coefficient of
Il. BASIC THEORY the lineary term is given by A, wave localization in

overdense situations occurs when the natural frequency of

A. Introductory remarks the associated oscillator can be interpreted as an imaginary

We Consider here the interaction of a |aser wave and aﬁumber. Our factoA iS deﬁned in terms of the effeCtive
ion acoustic mode in a globally neutral plasma consisting ofrequency », which incorporates all possible frequency
light electrons and massive ions. Let us rederive the goverrishifts. Therefore, this factak replaces, in a simplified way,
ing equation for the laser mode in a slightly different waythe slightly more complicated total frequency shift intro-
from the one used in Ref9]. If one assumes that the waves duced in Ref[9]. This is why we adopt the present formal-
are plane waves propagating along thaxis, the equation 1SM. _ o _ _
governing the high-frequency laser dynamics can be written As for the ion acoustic field excited by ponderomotive

in the form effects associated with the electromagnetic wave, we simply
write down the governing equation obtained from the analy-
P ) E 470g? 5 ) L sis of the low-frequency dynamics involving the ion acoustic
prramles. e (No+ dNne) T (1) electric-field potentiab, the massless warm electronic fluid,

and the massive cold ionic fluid. One h&§

where —q is the electron chargem, its rest massng the )
average densitygn, the fluctuations of the electronic density d“o __

due to the action of the waves, andhe velocity of light. In dé? JMZ2=-2d
Eqg. (1) the laser intensity is considered strong enough to

drive electrons to relativistic velocities. The fie¥(z,t) is  where® has been normalized bW, /q (q is the ion charge
defined in terms of the relation and we have introduced the Mach number V/C, with the

ion acoustic velocity Cg written in the form Cg
=(T./m,)¥2 The ions are considered nonrelativistic due to
their large mass. We point out here that the total ion and
electron densities are respectively measured by the absolute
whereA is the vector potential of a circularly polarized laser values of the first and second terms on the right-hand side of
field, with i?=—1 and c.c. designating complex conjugate.Eq. (6); in particular, the fluctuating electron density ob-

+eP B ALY 6)

gA

1. .
W: E(x—ly)\Ierc.c., (2)

Now we assume solutions of the form tained under the assumption of massless electrons,
_ i(kz— wt) 12
V(z,t)=y(&)e @b 3 Sng=eP BTV @

with k andw, respectively the wave vector and the effectivejs the expression to be used in E§).

frequency of the laser, witf=z—Vt and ¢ a real slowly Equations5)—(7) govern the nonlinearly coupled dynam-
varying variable;V denotes the propagation velocity. Next jcg of the dynamical variableg(&) and ®(¢&). We assume
we substitute relatio(8) into Eq. (1) and separate the result- yropagation at a constant velocity and take into consider-
ing equation into its real and imaginary parts. The imaginaryation full nonlinear effects in both the ion acoustic and the

component yields the relation transverse relativistic dynamics of electrons. It is worth men-
tioning that alternative approaches do not restrict the space-
C2k . . .
V= oo 4) time dependence of the solutions, but use weak nonlinear
o’ expansions instegd 3—15.

Now, as shown in the paper by Rabal.[9], Egs.(5) and
from which one can determine the propagation velocity,(6) can be obtained from a generalized two degrees of free-
given the frequency and wave vector of the carrier. The reatlom HamiltonianH,
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)

where a misprint if9] has been corrected. In the Hamil- 0.02

tonian, P, and P4, are the canonical momenta conjugate to

the corresponding subscript coordinates. Hence our system P o000

contains four dimensionst, P, ®, andPy, . ®

Since the Hamiltoniari8) does not depend explicitly on

the “time” coordinateé, it is a constant of motion. We will 0.02

be interested in finding solitary waves and all those solutions

towards which initial solitary waves can evolve in time if -0.04

they are unstable. Therefore, we shall work on the particular

energy surface that allows for the presence of the configura- -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05
tion ®=¢=P4=P,=0, since this configuration is in fact
the appropriate asymptotic solution for solitary pulses. We
recall that from the canonical equations generatetHb¥q.

(8), it follows thatd®/dé=—Pg, diy/dé= P¢,/,82, and the
boundary conditions for a solitary pulse are, in the more
traditional form,®, ¢, d®/d¢, anddy/dé—0 as|é|—.

The above considerations enable one to determine the con-
stant numerical value of the Hamiltonian; it reads
H=1+M?2

The Hamiltonian supports pure ion acoustic waves; it is
easy to see that regardless of the valuePgfand &, if P oo
Y(£=0)=P,(¢=0)=0, then y(£)=P,(£)=0 at anyé. ¢
This is not true for electromagnetic waves. Even if one starts
with a laser pulse in the absence of any space-charge fields
(®=P4=0), Eq. (6) indicates that the dynamics of the
electric-field potential is subsequently driven by/afactor.

We shall restrict the present analysis to subsonic cases, d
whereM <1. This causes the coefficient of the lin&aiterm -0.30 -0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05
in Eqg. (6) to assume only negative values. As for the laser
field, we focus attention on overdense plasmas wital.
Since the linear coefficient of Eq5) is given by a factor
(1—A)/B, as already mentioned, the system is linearly un-
stable against the generation and propagation of electromag-
netic modes. Nonlinear saturation of the unstable process
may be responsible for the creation of solitary pulses.

B. Adiabatic approximation

It has been seen that laser localization occurs in overdense
plasmas wherd<1. Since, in general) is only slightly
different from unity and since the small factor-1A is yet to
be divided by the large factgs to obtain the coefficient of
the linear term of Eq(5), the conclusion is that, in general,
the following relation may hold:

(1—A) -0.04 -0.02 000 002
<

g Y

But if such a relation does hold, it is likely that the dynamics £ 1. phase space on thé (P,,) plane for fixed values of

on the @,P,) phase plane tends to be much slower than the;p, with M=0.9 and 8=100: (8 =0 and (b) ¥=0.001. (c)

corresponding dynamics developing on the,Pg4) phase (,P,) phase space usiny=0.98.
plane. In this limiting case one could be tempted to use the

results of the center manifold and adiabatic theor¢h@, tion of ¢, the ® dynamics evolves in such a way as to con-
which say that the integration on the latter phase plane coulerve the action integral (1449 ¢$P4, d®. In Fig. 1 we take
be done simply by taking Eq6) with ¢ considered as a fixed values ofi to plot contour levels of the driven ion
constant factor. In addition, ag slowly evolves as a func- acoustic Hamiltonian, which is here defined as

1

©)
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P2 — 2 1 1-2B-2M?+M*
H¢=—7q+M MZ—2d+eP+tA-AV1H07 (1) szE(l_W)®fixed+ YR Dieq (13

as for Pg one hasPg fixeq= 0. We point out that in the ex-
treme adiabatic limit where frequency shifts are vanishingly
small,A—1, the first term on the right-hand side of E§3)

In the adiabatic regime this is the Hamiltonian controlling
the fast motion on thed®,Pg4) plane. For vanishingly small
values ofi/? one can see in Fig.(4) an elliptic fixed point at

- ) : o coincides with expressio(85) of Ref.[9].
the origin and a hyperbollc_: point located @KO, trajecto- Given i, the quadratic relation above furnishes two roots
ries move counterclockwise and the typical parameters

£=100 andM =0.9 are considered. Now ag grows the in the variable® if the appropriate discriminant is positive.

elliptic point moves toward the hyperbolic point, as seen inOne of the roots represents the elliptic point, which we shall

2 . .
Fig. 1(b). For large enough values gf the elliptic and hy- call ®.(y°), and the other represents the hyperbolic point

2 - -
perbolic fixed points coalesce in an inverse saddle-node bi(-bhypw ). bOth. seen in F|gs_. (& and b). V_Vhat_must be_

X i . done now is to substitute the adiabatic relation
furcation[17]; we shall refer to this coalescence as collapse,

) o ® g =Do (42 into Eq. (5) to determine and examine the
For completeness we display in Figclthe (,P,) phase el el 7 ,
space obtained from the full HamiltonigB) when we set slow dynamics on theg,P,) phase plane. Assuming for a

2 . .
0 andP, 0. Note tat when <1, as i Fig. 1o, TS| 140 small i sha e seen o be e
where we consideA =0.98, the fixed point at the origin is y Y: P q

hyperbolic; forA>1 the fixed point would be elliptic. in Eq. (13) and obtain
A delicate point about the adiabatic approach is that the 1 M28

adiabatic theory may be expected to work relatively well Do~z ———

only if the maximum value of? throughout the entire dy- 2M*-1

namics is much smaller than the critical value for which the

collapse does occur. Indeed, if this is the case, the rota‘tioné{YhiCh shows thatb<0 if M=1. Therefore, in the present
frequency around the elliptic point on thé(P4) plane can approximation thejs dynamics is commanded by the effec-

.~ . tive potential written, apart from a global multiplicative con-
be expected to be larger enough than the characteristic t'ms(?anf as » ap g P

scale of they dynamics. But, on the other hand, if the maxi-
mum value of? becomes too close to the critical value, the 1 1 M23
rotational frequency tends to diminish and attain values com- Vel ) = E(A - 1)¢2+§( 1+ 8- WTl) yt. (15

parable to they time scales. The rotational frequency actu-

ally vanishes at th? collapse. From this point .Of. VIew, E*)I-_ . It is thus seen that near the ion acoustic resonance where
may not be sufficient to guarantee adiabaticity since it ISM~1. the electric-field potential response  satisfies

derived on the basis of linearization procedures, where th&)|>¢2 and essentially determines the adiabatically satu-
fields are assumed to be much smaller than the maximurn,, 4\ aiue of the laser field

values they can actually attain as time elapses. With that in

(14)

mind we now proceed to derive a validity condition for adia- (A—1)(M2—1)

baticity that takes into account the nonlinear effects associ- P b (16)
ated with the finiteness af?. We shall see that the adiabatic B

range is in fact much smaller than the one suggested by Egl"he approximation we have used in E¢s5) and (16) as-

9. : ) ! )
. . . . .. sumes that the quadrati® term in relation(13) is much
Let us then examine the adiabatic trajectory of the elliptic L ; ; -

. X A maller than the others. This is tr nly if one i fficientl
point on the (b,P4) plane. Our interest lies in the fact that Smafier fhan the others S 1S TTUe on'y 11 one IS suriciently

th st dition for thi it " bIaway from that situation where the discriminant vanishes
e gmstgnc? CO? t;}lon or '? pol'%.tpm\f"tﬁs adfessg“a ¥:ausing the collapsing of elliptic and hyperbolic points. Near
good estimate ot the range of vaiidity of the adiabalc re-,q collapse, in particular, the adiabatic approximation is ex-

gime; we emphasize that adiabaticity is expected to breafSected to break down. GiveM and 3, use of Eq(16) and
down when the elliptic and hyperbolic points cease to exlStthe self-consistency requirement of a non-negative discrimi-

Or;_e ca:n tjhselthe tr_esultfs flroml the ce_ntefr_ mgnlfo_ldttheorem Bant for relation(13) finally yields a complicated relation
estimate the location of slowly moving fixed points, that can be used as an estimate for the critical value of
A, A, below which approximatioril4) is no longer valid,

IHg IHg
T | TP, =0. (12) | —(—4+7B+8M2+ BM2-4MY)  7+M?2
ixed fixed A<A,= 5 yi ~ .
4(1-2B-2M*+M?) 8
For a given value off, we thus have (17)
As A starts to get too close ta, the adiabatic approxima-
— M tions are expected to get poorer and poorer. Conditi@his
ePiedt BBV —, (12 a rough estimate that could be refined with more detailed
VMZ =2 Diyeq algebraic work. However, we shall take it as sufficiently ac-

curate and complete for our purposes. In any case, the ulti-
from which a series expansion yields a relation correct up tanate answer is yet to be given by numerical work, as we will
quadratic terms do next.
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FIG. 2. Time series in the adiabatic regimé:=0.9, =100, FIG. 3. Accuracy of the adiabatic approximation tested on the
andA=0.99. (#,P,) plane:M=0.9, 8=100, andA=0.98.

Ill. TRANSITION FROM ADIABATIC . .
TO CHAOTIC REGIMES tonian[see Eq.(8)] with two degrees of freedom, we make

use of the Poincarenap methodology and plot the pair of
phase variables® and Pq each time P,=0 with

In all the following numerical applications we use dP,/d§>0. Several initial conditions are launched with the
B=100 andM = 0.9, which yieldA~0.976. We promptly numerical values ford(£=0) distributed within a small
conclude that the validity range for the adiabatic regime igange typically satisfying-0.001<®(£=0)<0.001. Simi-
quite narrow, as a matter of fact, much narrower than thearly to the initial simulation presented before, for all initial
range predicted by Eq9). Indeed, for the chosen values of conditions we always takgs=P,=0 and calculate the cor-
B andM and considering overdense plasmas, &j.basi-  responding initialP,, from the constant numerical value of
cally imposes no essential restriction on the valueAofa  the HamiltonianH =1+ MZ2. This kind of launching condi-
failure of the linear theory as mentioned before. In the fol-tiop jnitially places the system in the vicinity of the solitary
lowing we shall see that the estimate based\gn Eq.(17),  gojution, which is the solution containing the point
is much more accurate th_an th_e one_bas_ed_or(giqind tha; =Py=y=P,=0. In integrable cases the ensuing nearly
the destruction of the adiabatic regime is in fact as’Soc'at‘:"g)olitary trajectories progress in fact as trains of solitons, but

with a tranS|t|on. t(.) chaos. - ... __even in the nonintegrable cases where solitons are not seen,
Before examining the validity ranges and the transition, : . . - .
the trajectories still cross the,=0 plane several times, an

let us first perform some initial simulations of Eq$) and . . .
(6) to make sure that the adiabatic regime is in fact present itfassentlal condm.on for' thg con struction of the maps.
condition(17) is safely observed. To do so we start a single We start by displaying in Fig.(@) thg map obtal_ned yvhen
initial condition with A=0.99, and with =Pq,=0, A=0.98. For suph a value of the. adiabatic regime is ex-
®=0.0005, andP,,=0.0024 such thaki =1+ M2. We plot pect_ed to prevail. In agregment with t_hat, what is seen in the
the time series for(&) and® (&) in Fig. 2. In the figure we plqt is a sgt of regular orbital concentric curves. Note that the
see thatd undergoes a fast oscillatory motion, whilz ~ €lliptic point appears to be located at a negative value of
evolves in a much slower time scale. The adiabatic feature§imply because this is the value of the electric-field potential
can be visualized also on thes(P,) phase plane as in Fig. When the recording conditior,=0, dP,/d¢>0 are satis-
3. In the figure we compare three solitary trajectories: thdied. Now if one starts to decreadethe transition to chaos is
exact trajectory, the adiabatic trajectory calculated from Eqgexpected to occur. Let us move on to Figb} where
(5) under the assumptiofl4), and the trajectory calculated A=0.975. As anticipated from the analytical estimates, a
from Eq.(5) under the assumptio®— 0. The adiabatic tra- considerable amount of chaotic activity can already be iden-
jectory yields a fairly good approximation to the actual tra-tified. The central region of the map is completely sur-
jectory. Here we used =0.98. This chosen value af is  rounded by a blend of stochastic orbits and resonant islands.
slightly smaller than in Fig. 2 because it allows a clearenn particular, it appears that the soliton solution that corre-
view of the differences between adiabatic and exact trajeCt()sponds to the central fixed point no |0nge|’ exists. In F(g) 4
ries. For values oA closer to unity the approximation gets e enlarge part of Fig.(®) to show details of the resonant
better and. better until such a point where no distinction cangjands. These small remaining regions of regularity of the
be appreciated. phase space are then totally suppressed when one reduces
B A further below. In Fig. 4d), for instance, we consider the
B. Transition caseA =0.97 to show a deep chaotic regime. In conclusion,
Now the question is what happens as the parameters afecomplete destruction of the regular trapping region does
varied beyond the validity range for the adiabatic regime. Tdndeed occur ad decreases. But if there is no trapping re-
simplify the discussion we shall focus attention on the be-gion, how would the trajectories behave? We will address
havior of the system a8 decreases. As our system is Hamil- this issue next.

A. Testing adiabaticity
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FIG. 4. Transition to chaos fdvl=0.9 andB=100: (a) A=0.98,(b) A=0.975, andd) A=0.97.(c) Details of the resonant islands in
(b).

C. Asymptotic states beyond the transition p2 AB P<21>
lim H=2—B¢2+7lﬂ2—7+MVM -2, (18)

We can actually see some persistency in chaos only for P

those intermediary situations whete is not too close to
unity, but not too small. Indeed, iA becomes sufficiently

small, sayA <A, no trapping region is effectively formed |, gther words, laser and ion acoustic fields become decou-
on the @,Py) plane. Even initial conditions originally peq in this limit. SinceA 3>0, the corresponding dynamics
launched within the trapping region predicted by the adiayy the |aser field must necessarily become that of an undriven
batic theory wheny=0 do not remain there. As a matter of parmonic oscillator. This is what is shown in Fig(b%
fact, the trajectories are eventually ejected into unboundegnere we project the same dynamics of Figa)5now on the
regions of the phase space whkrtrosses the validity limits (#,P,) phase plane. After a certain amount of time follow-
of adiabaticity. For those cases, chaos would be at most g a figure-eight shape like the ones seen in Figs.dnd 3,
transient that would take place during initial instants, befOI'Qhere is a dynamica] transition to the circular Shape so char-
ejection. The question to be asked now should be on thecteristic of the harmonic oscillator. The instant of the tran-
configuration of these unbounded orbits. What we have obsition coincides, as it should, with the moment of ejection
served is that once the trajectory escapes from the trappingeen in Fig. &) and occurs approximately after 30 cycles of
region in the ion acoustic phase space, it starts to follow the¢he laser wave in its initial figure-eight phase trajectory. An-
open flow lines of Fig. 1. This is confirmed in Fig(a, other interesting point connected to this asymptotic state is
where we show a continuous plot displaying a freed trajecthat asb — — «, the particle density becomes very snjalte
tory that was started witth =0.97 and®(£=0)=0.0001 Eg. (7)]. Noticing that® <0, the ponderomotive field cre-
[Figs. 5a) and 5b) are not Poincarenaps; the trajectory ated by the laser induces an initial potential well in which the
points are periodically recorded with a small but constaninterior of the ion fluid undergoes acceleration, thus becom-
time steg. The fact that the subsequent trajectory evolvesng less dense. If the amplitude of the laser is too large the
along the flow lines implies thab gets more and more nega- process is unstable and never arrests. When the density is
tive. Now, if one considers Eq@8) one readily sees that low the laser becomes an almost standing wave with a small
regardless the value af, propagation velocity of the crest¥{c).
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FIG. 5. Asymptotic states on the phase plariesThe escaping =030 retativistic escape
trajectory and(b) the circular trajectory appear on the respective i
phase planes after approximately ten figure-eight cycles of the - 1
¥,P, variables:sM =0.9, 8=100,A=0.97. ~0.50 T r T T . T T 0.10

D. Role of relativistic effects —V’WWWYW

Our original equation(5) includes full relativistic elec-
tronic nonlinearities. As a final topic it is perhaps interesting %
to discuss the role of these relativistic nonlinear effects as
compared to ponderomotive nonlinear effects. i
What we find here is that while in the adiabatic regime,
saturation is essentially governed by ponderomotive nonlin- 1
earities. This is the basic conclusion associated with Eq. e -0.50
(16). Now we would like to know whether or not relativistic 0 5000 10000 15000
effects grow in importance in chaotic regimes. To this end
we perform two pairs of simulations, which are displayed in
Fig. 6. In the upper panel of each pair vye_deplct_tlme SereS G, 6. Influence of relativistic nonlinearities on the dynamics.
for ®(¢) considering exact fully relativistic nonlinear dy- |, the lower panel of each part the relativistic effect is artificially
namics. In the lower panel we consider the time series Withy,ppressed(a) Adiabatic regular regime withA=0.98 and (b)
relativistic mass correction suppressed. It is seen that in thg = .97 is taken to produce an escaping trajectory after some tran-

adiabatic regime of Fig. (@), where we consideA=0.98,  sjent chaos. It is seen that in the chaotic case one should not discard
relativistic effects are not prominent, as both figures are alrelativistic effects.

most identical. On the other hand, in Figlb where we

considerA=0.97, relativistic effects are of relevance. In- reversed and the nonrelativistic trajectory may be ejected af-
deed, in the time series of Fig(l§ we see that for the par- ter the relativistic one. What is really remarkable here, how-
ticular initial conditions we use, the nonrelativistic trajectory ever, is that even in our case of small field amplitudes where
undergoes much earlier ejection from the initial trapping re~elativistic effects are small, relativistic and nonrelativistic
gion. For other initial conditions, the escape order may berajectories may largely differ in chaotic regimes, the reason

T
1

-0.10

nonrelativistic escape

-0.30
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for this being the extreme sensibility of chaotic systems tarajectories with relativistic corrections artificially removed

parameter variations. can largely differ from the exact ones, the reason being the
sensibility of chaotic systems to parameter variations.
IV. CONCLUSION One general conclusion obtained here is that the param-

i ] ] _ eter range for the existence of a solitary wave is extremely

We have performed a nonlinear analysis on the interactioarrow. This numerically confirmed fact can be predicted
of high-power laser waves with ion acoustic waves in aonly by nonlinear estimates such as that provided by Eq.
plasma. We assume stationary propagation in an overdenggz) which takes into account the effect of finite values of
plasma and consequently show that three generic configurg;2 on the existence of fixed points. Linear estimates such as
tions take place. If the effective laser frequency is onlyihat of Eq.(9) are much less accurate. Due to this narrow
slightly lower than the average electron plasma frequencyeyistence range, we have not observed, for instance, double
the ensuing dynamics is adiabatic. The faster varying iorhump solitons such as those obtained in R&E. The point is
acoustic field is adiabatically enslaved to the slowly varyingihat according to the calculations done in this reference, and
envelope laser field and the resulting electromagnetic envénaking the appropriate connections and translations between
lope solitons are likely to exist and remain stable. AS on&ne various formulas, double hump solitons exist only when
starts to decrease the effective laser frequency, adiabaticity reaches small valued ~0.7. However, for such a small

becomes progressively poorer. A blend of confined chaotiGajye of this parameter, our system has already lost stability
regions and nonlinear resonance islands are seen on thge to the transition to chaos.

(®,Py) phase space. Then, for yet smaller values of the
laser frequency adiabaticity is completely destroyed. Initial
conditions are rapidly ejected from the trapping region on the
ion acoustic phase space and proceed to move along un-
bounded curves towardd — — . In this limit the system This work was partially supported by Financiadora de
becomes decoupled, the laser field starts to behave like Bstudos e Projeto§~INEP) and Conselho Nacional de De-
vacuum field, and the plasma becomes progressively rasenvolvimento Cientico e Tecnolgico (CNPq, Brazil. Nu-
efied. merical computing was performed on the CRAY Y-MP2E

Relativistic effects are moderate in adiabatic regimes, busupercomputer at the Universidade Federal do Rio Grande
of considerable relevance in chaotic regimes. We saw thato Sul Supercomputing Center.

ACKNOWLEDGMENTS

[1] R.J. Noble, Phys. Rev. 82, 460(1985. [11] E. Infeld and G. RowlandsNonlinear Waves, Solitons and
[2] W.L. Kruer, The Physics of Laser Plasma Interactions Chaos(Cambridge University Press, Cambridge, 1990
(Addison-Wesley, Reading, MA, 1988 [12] J.M. Wersinger, J.M. Finn, and E. Ott, Phys. FluR® 1142
[3] J. Weiland and H. WilhelmssorGoherent Non-Linear Inter- (1980.
action of Waves in Plasmd®ergamon, Oxford, 1977 [13] H.T. Moon, Phys. Rev. Let64, 412 (1990.
[4] A.C.-L. Chian, S.R. Lopes, and J.R. Abalde, Physicé&dbe [14] X.T. He and C.Y. Zheng, Phys. Rev. Lef4, 78 (1995.
published. [15] G.I. de Oliveira, L.P.L de Oliveira, and F.B. Rizzato, Phys.
[5] S.R. Lopes and A.C.-L. Chian, Phys. Rev5g 170(1996. Rev. E 54, 3239(1996; G.I. de Oliveira and F.B. Rizzato,
(6] (Aig%_aL' Chian and P.C. Clemmow, J. Plasma Phi4. 505 Phys. Lett. A214, 40 (1998; G.I. de Oliveira, F.B. Rizzato,

and A.C.-L. Chian, Phys. Rev. ¥, 2025(1995.

[16] J. Guckenheimer and P. Holmésdpnlinear Oscillations, Dy-
namical Systems, and Bifurcations of Vector Figl@pringer-
Verlag, New York, 1990

[17] G. Corso and F.B. Rizzato, PhysicadD, 296 (1995; Phys.
Rev. E52, 3591(1995.

[7] A.C.-L. Chian, Phys. Rev. 24, 2773(198).

[8] P.K. Kaw, A. Sen, and E.J. Valeo, Physica9D96 (1983.

[9] N.N. Rao, R.K. Varma, P.K. Shukla, and M.Y. Yu, Phys. Flu-
ids 26, 2488(1983.

[10] A.J. Lichtenberg and M.A. LiebermaRegular and Stochastic
Motion (Springer, Berlin, 1983



